6 resultados para Repetitive DNA sequences

em Universidad Politécnica de Madrid


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of water potential ( J w ) on the growth of 15 fungal species isolated from cheeses was analysed. The species, identified mainly by analysis of DNA sequences, belonged to genera Penicillium , Geotrichum , Mucor , Aspergillus , Microascus and Talaromyces . Particularly, the effect of matric potential ( J m ), and ionic (NaCl) and non-ionic (glycerol) solute potentials ( J s ) on growth rate was studied. The response of strains was highly dependent on the type of J w . For J s , clear profiles for optimal, permissive and marginal conditions for growth were obtained, and differences in growth rate were achieved comparing NaCl and glycerol for most of the species. Conversely, a sustained growth was obtained for J m in all the strains, with the exception of Aspergillus pseudoglaucus , whose growth increased proportionally to the level of water stress. Our results might help to understand the impact of environmental factors on the ecophysiology and dynamics of fungal populations associated to cheeses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las Redes de Procesadores Evolutivos-NEP propuestas en [Mitrana et al., 2001], son un modelo computacional bio-inspirado a partir de la evolución de poblaciones de células, definiendo a nivel sintáctico algunas propiedades biológicas. En este modelo, las células están representadas por medio de palabras que describen secuencias de ADN. Informalmente, en algún instante de tiempo, el sistema evolutivo está representado por una colección de palabras cada una de las cuales representa una célula. El espacio genotipo de las especies, es un conjunto que recoge aquellas palabras que son aceptadas como sobrevivientes (es decir, como \correctas"). Desde el punto de vista de la evolución, las células pertenecen a especies y su comunidad evoluciona de acuerdo a procesos biológicos como la mutación y la división celular. éstos procesos representan el proceso natural de evolución y ponen de manifiesto una característica intrínseca de la naturaleza: el paralelismo. En este modelo, estos procesos son vistos como operaciones sobre palabras. Formalmente, el modelo de las NEP constituyen una arquitectura paralela y distribuida de procesamiento simbólico inspirada en la Máquina de conexión [Hillis, 1981], en el Paradigma de Flujo Lógico [Errico and Jesshope, 1994] y en las Redes de Procesadores Paralelos de Lenguajes (RPPL) [Csuhaj-Varju and Salomaa, 1997]. Al modelo NEP se han ido agregando nuevas y novedosas extensiones hasta el punto que actualmente podemos hablar de una familia de Redes de Procesadores Bio-inspirados (NBP) [Mitrana et al., 2012b]. Un considerable número de trabajos a lo largo de los últimos años han demostrado la potencia computacional de la familia NBP. En general, éstos modelos son computacionalmente completos, universales y eficientes [Manea et al., 2007], [Manea et al., 2010b], [Mitrana and Martín-Vide, 2005]. De acuerdo a lo anterior, se puede afirmar que el modelo NEP ha adquirido hasta el momento un nivel de madurez considerable. Sin embargo, aunque el modelo es de inspiración biológica, sus metas siguen estando motivadas en la Teoría de Lenguajes Formales y las Ciencias de la Computación. En este sentido, los aspectos biológicos han sido abordados desde una perspectiva cualitativa y el acercamiento a la realidad biológica es de forma meramente sintáctica. Para considerar estos aspectos y lograr dicho acercamiento es necesario que el modelo NEP tenga una perspectiva más amplia que incorpore la interacción de aspectos tanto cualitativos como cuantitativos. La contribución de esta Tesis puede considerarse como un paso hacia adelante en una nueva etapa de los NEPs, donde el carácter cuantitativo del modelo es de primordial interés y donde existen posibilidades de un cambio visible en el enfoque de interés del dominio de los problemas a considerar: de las ciencias de la computación hacia la simulación/modelado biológico y viceversa, entre otros. El marco computacional que proponemos en esta Tesis extiende el modelo de las Redes de Procesadores Evolutivos (NEP) y define arquitectura inspirada en la definición de bloques funcionales del proceso de señalización celular para la solución de problemas computacionales complejos y el modelado de fenómenos celulares desde una perspectiva discreta. En particular, se proponen dos extensiones: (1) los Transductores basados en Redes de Procesadores Evolutivos (NEPT), y (2) las Redes Parametrizadas de Procesadores Evolutivos Polarizados (PNPEP). La conservación de las propiedades y el poder computacional tanto de NEPT como de PNPEP se demuestra formalmente. Varias simulaciones de procesos relacionados con la señalización celular son abordadas sintáctica y computacionalmente, con el _n de mostrar la aplicabilidad e idoneidad de estas dos extensiones. ABSTRACT Network of Evolutionary Processors -NEP was proposed in [Mitrana et al., 2001], as a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells accepted as survivors (correct) are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing inspired from the Connection Machine [Hillis, 1981], the Flow Logic Paradigm [Errico and Jesshope, 1994] and the Networks of Parallel Language Processors (RPPL) [Csuhaj-Varju and Salomaa, 1997]. Since the date when NEP was proposed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP) [Mitrana et al., 2012b]. During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated [Manea et al., 2007, Manea et al., 2010b, Mitrana and Martín-Vide, 2005]. Therefore, we can say that the NEP model has reached its maturity. Nevertheless, although the NEP model is biologically inspired, this model is mainly motivated by mathematical and computer science goals. In this context, the biological aspects are only considered from a qualitative and syntactical perspective. In view of this lack, it is important to try to keep the NEP theory as close as possible to the biological reality, extending their perspective incorporating the interplay of qualitative and quantitative aspects. The contribution of this Thesis, can be considered as a starting point in a new era of the NEP model. Then, the quantitative character of the NEP model is mandatory and it can address completely new different types of problems with respect to the classical computational domain (e.g. from the computer science to system biology). Therefore, the computational framework that we propose extends the NEP model and defines an architecture inspired by the functional blocks from cellular signaling in order to solve complex computational problems and cellular phenomena modeled from a discrete perspective. Particularly, we propose two extensions, namely: (1) Transducers based on Network of Evolutionary Processors (NEPT), and (2) Parametrized Network of Polarized Evolutionary Processors (PNPEP). Additionally, we have formally proved that the properties and computational power of NEP is kept in both extensions. Several simulations about processes related with cellular signaling both syntactical and computationally have been considered to show the model suitability.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effect of water potential ( J w ) on the growth of 15 fungal species isolated from cheeses was analysed. The species, identi fi ed mainly by analysis of DNA sequences, belonged to genera Penicillium, Geotrichum, Mucor , Aspergillus , Microascus and Talaromyces . Particularly, the effect of matric potential ( J m ), and ionic (NaCl) and non-ionic (glycerol) solute potentials ( J s ) on growth rate was studied. The response of strains was highly dependent on the type of J w . For J s, clear profiles for optimal, permissive and marginal conditions for growth were obtained, and differences in growth rate were achieved comparing NaCl and glycerol for most of the species. Conversely, a sustained growth was obtained for J m in all the strains, with the exception of Aspergillus pseudoglaucus, whose growth increased proportionally to the level of water stress. Our results might help to understand the impact of environmental factors on the ecophysiology and dynamics of fungal populations associated to cheeses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pseudomonas savastanoi pv. savastanoi NCPPB 3335 causes olive knot disease and is a model pathogen for exploring bacterial infection of woody hosts. The type III secretion system (T3SS) effector repertoire of this strain includes 31 effector candidates plus two novel candidates identified in this study which have not been reported to translocate into plant cells. In this work, we demonstrate the delivery of seven NCPPB 3335 effectors into Nicotiana tabacum leaves, including three proteins from two novel families of the P. syringae complex effector super-repertoire (HopBK and HopBL), one of which comprises two proteins (HopBL1 and HopBL2) that harbor a SUMO protease domain. When delivered by P. fluorescens heterologously expressing a P. syringae T3SS, all seven effectors were found to suppress the production of defense-associated reactive oxygen species. Moreover, six of these effectors, including the truncated versions of HopAA1 and HopAZ1 encoded by NCPPB 3335, suppressed callose deposition. The expression of HopAZ1 and HopBL1 by functionally effectorless P. syringae pv. tomato DC3000D28E inhibited the hypersensitive response in tobacco and, additionally, expression of HopBL2 by this strain significantly increased its competitiveness in N. benthamiana. DNA sequences encoding HopBL1 and HopBL2 were uniquely detected in a collection of 31 P. savastanoi pv. savastanoi strains and other P. syringae strains isolated from woody hosts, suggesting a relevant role of these two effectors in bacterial interactions with olive and other woody plants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La informática teórica es una disciplina básica ya que la mayoría de los avances en informática se sustentan en un sólido resultado de esa materia. En los últimos a~nos debido tanto al incremento de la potencia de los ordenadores, como a la cercanía del límite físico en la miniaturización de los componentes electrónicos, resurge el interés por modelos formales de computación alternativos a la arquitectura clásica de von Neumann. Muchos de estos modelos se inspiran en la forma en la que la naturaleza resuelve eficientemente problemas muy complejos. La mayoría son computacionalmente completos e intrínsecamente paralelos. Por este motivo se les está llegando a considerar como nuevos paradigmas de computación (computación natural). Se dispone, por tanto, de un abanico de arquitecturas abstractas tan potentes como los computadores convencionales y, a veces, más eficientes: alguna de ellas mejora el rendimiento, al menos temporal, de problemas NPcompletos proporcionando costes no exponenciales. La representación formal de las redes de procesadores evolutivos requiere de construcciones, tanto independientes, como dependientes del contexto, dicho de otro modo, en general una representación formal completa de un NEP implica restricciones, tanto sintácticas, como semánticas, es decir, que muchas representaciones aparentemente (sintácticamente) correctas de casos particulares de estos dispositivos no tendrían sentido porque podrían no cumplir otras restricciones semánticas. La aplicación de evolución gramatical semántica a los NEPs pasa por la elección de un subconjunto de ellos entre los que buscar los que solucionen un problema concreto. En este trabajo se ha realizado un estudio sobre un modelo inspirado en la biología celular denominado redes de procesadores evolutivos [55, 53], esto es, redes cuyos nodos son procesadores muy simples capaces de realizar únicamente un tipo de mutación puntual (inserción, borrado o sustitución de un símbolo). Estos nodos están asociados con un filtro que está definido por alguna condición de contexto aleatorio o de pertenencia. Las redes están formadas a lo sumo de seis nodos y, teniendo los filtros definidos por una pertenencia a lenguajes regulares, son capaces de generar todos los lenguajes enumerables recursivos independientemente del grafo subyacente. Este resultado no es sorprendente ya que semejantes resultados han sido documentados en la literatura. Si se consideran redes con nodos y filtros definidos por contextos aleatorios {que parecen estar más cerca a las implementaciones biológicas{ entonces se pueden generar lenguajes más complejos como los lenguajes no independientes del contexto. Sin embargo, estos mecanismos tan simples son capaces de resolver problemas complejos en tiempo polinomial. Se ha presentado una solución lineal para un problema NP-completo, el problema de los 3-colores. Como primer aporte significativo se ha propuesto una nueva dinámica de las redes de procesadores evolutivos con un comportamiento no determinista y masivamente paralelo [55], y por tanto todo el trabajo de investigación en el área de la redes de procesadores se puede trasladar a las redes masivamente paralelas. Por ejemplo, las redes masivamente paralelas se pueden modificar de acuerdo a determinadas reglas para mover los filtros hacia las conexiones. Cada conexión se ve como un canal bidireccional de manera que los filtros de entrada y salida coinciden. A pesar de esto, estas redes son computacionalmente completas. Se pueden también implementar otro tipo de reglas para extender este modelo computacional. Se reemplazan las mutaciones puntuales asociadas a cada nodo por la operación de splicing. Este nuevo tipo de procesador se denomina procesador splicing. Este modelo computacional de Red de procesadores con splicing ANSP es semejante en cierto modo a los sistemas distribuidos en tubos de ensayo basados en splicing. Además, se ha definido un nuevo modelo [56] {Redes de procesadores evolutivos con filtros en las conexiones{ , en el cual los procesadores tan solo tienen reglas y los filtros se han trasladado a las conexiones. Dicho modelo es equivalente, bajo determinadas circunstancias, a las redes de procesadores evolutivos clásicas. Sin dichas restricciones el modelo propuesto es un superconjunto de los NEPs clásicos. La principal ventaja de mover los filtros a las conexiones radica en la simplicidad de la modelización. Otras aportaciones de este trabajo ha sido el dise~no de un simulador en Java [54, 52] para las redes de procesadores evolutivos propuestas en esta Tesis. Sobre el término "procesador evolutivo" empleado en esta Tesis, el proceso computacional descrito aquí no es exactamente un proceso evolutivo en el sentido Darwiniano. Pero las operaciones de reescritura que se han considerado pueden interpretarse como mutaciones y los procesos de filtrado se podrían ver como procesos de selección. Además, este trabajo no abarca la posible implementación biológica de estas redes, a pesar de ser de gran importancia. A lo largo de esta tesis se ha tomado como definición de la medida de complejidad para los ANSP, una que denotaremos como tama~no (considerando tama~no como el número de nodos del grafo subyacente). Se ha mostrado que cualquier lenguaje enumerable recursivo L puede ser aceptado por un ANSP en el cual el número de procesadores está linealmente acotado por la cardinalidad del alfabeto de la cinta de una máquina de Turing que reconoce dicho lenguaje L. Siguiendo el concepto de ANSP universales introducido por Manea [65], se ha demostrado que un ANSP con una estructura de grafo fija puede aceptar cualquier lenguaje enumerable recursivo. Un ANSP se puede considerar como un ente capaz de resolver problemas, además de tener otra propiedad relevante desde el punto de vista práctico: Se puede definir un ANSP universal como una subred, donde solo una cantidad limitada de parámetros es dependiente del lenguaje. La anterior característica se puede interpretar como un método para resolver cualquier problema NP en tiempo polinomial empleando un ANSP de tama~no constante, concretamente treinta y uno. Esto significa que la solución de cualquier problema NP es uniforme en el sentido de que la red, exceptuando la subred universal, se puede ver como un programa; adaptándolo a la instancia del problema a resolver, se escogerín los filtros y las reglas que no pertenecen a la subred universal. Un problema interesante desde nuestro punto de vista es el que hace referencia a como elegir el tama~no optimo de esta red.---ABSTRACT---This thesis deals with the recent research works in the area of Natural Computing {bio-inspired models{, more precisely Networks of Evolutionary Processors first developed by Victor Mitrana and they are based on P Systems whose father is Georghe Paun. In these models, they are a set of processors connected in an underlying undirected graph, such processors have an object multiset (strings) and a set of rules, named evolution rules, that transform objects inside processors[55, 53],. These objects can be sent/received using graph connections provided they accomplish constraints defined at input and output filters processors have. This symbolic model, non deterministic one (processors are not synchronized) and massive parallel one[55] (all rules can be applied in one computational step) has some important properties regarding solution of NP-problems in lineal time and of course, lineal resources. There are a great number of variants such as hybrid networks, splicing processors, etc. that provide the model a computational power equivalent to Turing machines. The origin of networks of evolutionary processors (NEP for short) is a basic architecture for parallel and distributed symbolic processing, related to the Connection Machine as well as the Logic Flow paradigm, which consists of several processors, each of them being placed in a node of a virtual complete graph, which are able to handle data associated with the respective node. All the nodes send simultaneously their data and the receiving nodes handle also simultaneously all the arriving messages, according to some strategies. In a series of papers one considers that each node may be viewed as a cell having genetic information encoded in DNA sequences which may evolve by local evolutionary events, that is point mutations. Each node is specialized just for one of these evolutionary operations. Furthermore, the data in each node is organized in the form of multisets of words (each word appears in an arbitrarily large number of copies), and all the copies are processed in parallel such that all the possible events that can take place do actually take place. Obviously, the computational process just described is not exactly an evolutionary process in the Darwinian sense. But the rewriting operations we have considered might be interpreted as mutations and the filtering process might be viewed as a selection process. Recombination is missing but it was asserted that evolutionary and functional relationships between genes can be captured by taking only local mutations into consideration. It is clear that filters associated with each node allow a strong control of the computation. Indeed, every node has an input and output filter; two nodes can exchange data if it passes the output filter of the sender and the input filter of the receiver. Moreover, if some data is sent out by some node and not able to enter any node, then it is lost. In this paper we simplify the ANSP model considered in by moving the filters from the nodes to the edges. Each edge is viewed as a two-way channel such that the input and output filters coincide. Clearly, the possibility of controlling the computation in such networks seems to be diminished. For instance, there is no possibility to loose data during the communication steps. In spite of this and of the fact that splicing is not a powerful operation (remember that splicing systems generates only regular languages) we prove here that these devices are computationally complete. As a consequence, we propose characterizations of two complexity classes, namely NP and PSPACE, in terms of accepting networks of restricted splicing processors with filtered connections. We proposed a uniform linear time solution to SAT based on ANSPFCs with linearly bounded resources. This solution should be understood correctly: we do not solve SAT in linear time and space. Since any word and auxiliary word appears in an arbitrarily large number of copies, one can generate in linear time, by parallelism and communication, an exponential number of words each of them having an exponential number of copies. However, this does not seem to be a major drawback since by PCR (Polymerase Chain Reaction) one can generate an exponential number of identical DNA molecules in a linear number of reactions. It is worth mentioning that the ANSPFC constructed above remains unchanged for any instance with the same number of variables. Therefore, the solution is uniform in the sense that the network, excepting the input and output nodes, may be viewed as a program according to the number of variables, we choose the filters, the splicing words and the rules, then we assign all possible values to the variables, and compute the formula.We proved that ANSP are computationally complete. Do the ANSPFC remain still computationally complete? If this is not the case, what other problems can be eficiently solved by these ANSPFCs? Moreover, the complexity class NP is exactly the class of all languages decided by ANSP in polynomial time. Can NP be characterized in a similar way with ANSPFCs?

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Una Red de Procesadores Evolutivos o NEP (por sus siglas en ingles), es un modelo computacional inspirado por el modelo evolutivo de las celulas, específicamente por las reglas de multiplicación de las mismas. Esta inspiración hace que el modelo sea una abstracción sintactica de la manipulation de information de las celulas. En particu¬lar, una NEP define una maquina de cómputo teorica capaz de resolver problemas NP completos de manera eficiente en tóerminos de tiempo. En la praóctica, se espera que las NEP simuladas en móaquinas computacionales convencionales puedan resolver prob¬lemas reales complejos (que requieran ser altamente escalables) a cambio de una alta complejidad espacial. En el modelo NEP, las cóelulas estóan representadas por palabras que codifican sus secuencias de ADN. Informalmente, en cualquier momento de cómputo del sistema, su estado evolutivo se describe como un coleccion de palabras, donde cada una de ellas representa una celula. Estos momentos fijos de evolucion se denominan configuraciones. De manera similar al modelo biologico, las palabras (celulas) mutan y se dividen en base a bio-operaciones sencillas, pero solo aquellas palabras aptas (como ocurre de forma parecida en proceso de selection natural) seran conservadas para la siguiente configuracióon. Una NEP como herramienta de computation, define una arquitectura paralela y distribuida de procesamiento simbolico, en otras palabras, una red de procesadores de lenguajes. Desde el momento en que el modelo fue propuesto a la comunidad científica en el año 2001, múltiples variantes se han desarrollado y sus propiedades respecto a la completitud computacional, eficiencia y universalidad han sido ampliamente estudiadas y demostradas. En la actualidad, por tanto, podemos considerar que el modelo teórico NEP se encuentra en el estadio de la madurez. La motivación principal de este Proyecto de Fin de Grado, es proponer una aproxi-mación práctica que permita dar un salto del modelo teórico NEP a una implantación real que permita su ejecucion en plataformas computacionales de alto rendimiento, con el fin de solucionar problemas complejos que demanda la sociedad actual. Hasta el momento, las herramientas desarrolladas para la simulation del modelo NEP, si bien correctas y con resultados satisfactorios, normalmente estón atadas a su entorno de ejecucion, ya sea el uso de hardware específico o implementaciones particulares de un problema. En este contexto, el propósito fundamental de este trabajo es el desarrollo de Nepfix, una herramienta generica y extensible para la ejecucion de cualquier algo¬ritmo de un modelo NEP (o alguna de sus variantes), ya sea de forma local, como una aplicación tradicional, o distribuida utilizando los servicios de la nube. Nepfix es una aplicacion software desarrollada durante 7 meses y que actualmente se encuentra en su segunda iteration, una vez abandonada la fase de prototipo. Nepfix ha sido disenada como una aplicacion modular escrita en Java 8 y autocontenida, es decir, no requiere de un entorno de ejecucion específico (cualquier maquina virtual de Java es un contenedor vólido). Nepfix contiene dos componentes o móodulos. El primer móodulo corresponde a la ejecución de una NEP y es por lo tanto, el simulador. Para su desarrollo, se ha tenido en cuenta el estado actual del modelo, es decir, las definiciones de los procesadores y filtros mas comunes que conforman la familia del modelo NEP. Adicionalmente, este componente ofrece flexibilidad en la ejecucion, pudiendo ampliar las capacidades del simulador sin modificar Nepfix, usando para ello un lenguaje de scripting. Dentro del desarrollo de este componente, tambióen se ha definido un estóandar de representacióon del modelo NEP basado en el formato JSON y se propone una forma de representation y codificación de las palabras, necesaria para la comunicación entre servidores. Adicional-mente, una característica importante de este componente, es que se puede considerar una aplicacion aislada y por tanto, la estrategia de distribution y ejecución son total-mente independientes. El segundo moódulo, corresponde a la distribucióon de Nepfix en la nube. Este de-sarrollo es el resultado de un proceso de i+D, que tiene una componente científica considerable. Vale la pena resaltar el desarrollo de este modulo no solo por los resul-tados prócticos esperados, sino por el proceso de investigation que se se debe abordar con esta nueva perspectiva para la ejecución de sistemas de computación natural. La principal característica de las aplicaciones que se ejecutan en la nube es que son gestionadas por la plataforma y normalmente se encapsulan en un contenedor. En el caso de Nepfix, este contenedor es una aplicacion Spring que utiliza el protocolo HTTP o AMQP para comunicarse con el resto de instancias. Como valor añadido, Nepfix aborda dos perspectivas de implementation distintas (que han sido desarrolladas en dos iteraciones diferentes) del modelo de distribution y ejecucion, que tienen un impacto muy significativo en las capacidades y restricciones del simulador. En concreto, la primera iteration utiliza un modelo de ejecucion asincrono. En esta perspectiva asincrona, los componentes de la red NEP (procesadores y filtros) son considerados como elementos reactivos a la necesidad de procesar una palabra. Esta implementation es una optimization de una topologia comun en el modelo NEP que permite utilizar herramientas de la nube para lograr un escalado transparente (en lo ref¬erente al balance de carga entre procesadores) pero produce efectos no deseados como indeterminacion en el orden de los resultados o imposibilidad de distribuir eficiente-mente redes fuertemente interconectadas. Por otro lado, la segunda iteration corresponde al modelo de ejecucion sincrono. Los elementos de una red NEP siguen un ciclo inicio-computo-sincronizacion hasta que el problema se ha resuelto. Esta perspectiva sincrona representa fielmente al modelo teórico NEP pero el proceso de sincronizacion es costoso y requiere de infraestructura adicional. En concreto, se requiere un servidor de colas de mensajes RabbitMQ. Sin embargo, en esta perspectiva los beneficios para problemas suficientemente grandes superan a los inconvenientes, ya que la distribuciín es inmediata (no hay restricciones), aunque el proceso de escalado no es trivial. En definitiva, el concepto de Nepfix como marco computacional se puede considerar satisfactorio: la tecnología es viable y los primeros resultados confirman que las carac-terísticas que se buscaban originalmente se han conseguido. Muchos frentes quedan abiertos para futuras investigaciones. En este documento se proponen algunas aproxi-maciones a la solucion de los problemas identificados como la recuperacion de errores y la division dinamica de una NEP en diferentes subdominios. Por otra parte, otros prob-lemas, lejos del alcance de este proyecto, quedan abiertos a un futuro desarrollo como por ejemplo, la estandarización de la representación de las palabras y optimizaciones en la ejecucion del modelo síncrono. Finalmente, algunos resultados preliminares de este Proyecto de Fin de Grado han sido presentados recientemente en formato de artículo científico en la "International Work-Conference on Artificial Neural Networks (IWANN)-2015" y publicados en "Ad-vances in Computational Intelligence" volumen 9094 de "Lecture Notes in Computer Science" de Springer International Publishing. Lo anterior, es una confirmation de que este trabajo mas que un Proyecto de Fin de Grado, es solo el inicio de un trabajo que puede tener mayor repercusion en la comunidad científica. Abstract Network of Evolutionary Processors -NEP is a computational model inspired by the evolution of cell populations, which might model some properties of evolving cell communities at the syntactical level. NEP defines theoretical computing devices able to solve NP complete problems in an efficient manner. In this model, cells are represented by words which encode their DNA sequences. Informally, at any moment of time, the evolutionary system is described by a collection of words, where each word represents one cell. Cells belong to species and their community evolves according to mutations and division which are defined by operations on words. Only those cells are accepted as surviving (correct) ones which are represented by a word in a given set of words, called the genotype space of the species. This feature is analogous with the natural process of evolution. Formally, NEP is based on an architecture for parallel and distributed processing, in other words, a network of language processors. Since the date when NEP was pro¬posed, several extensions and variants have appeared engendering a new set of models named Networks of Bio-inspired Processors (NBP). During this time, several works have proved the computational power of NBP. Specifically, their efficiency, universality, and computational completeness have been thoroughly investigated. Therefore, we can say that the NEP model has reached its maturity. The main motivation for this End of Grade project (EOG project in short) is to propose a practical approximation that allows to close the gap between theoretical NEP model and a practical implementation in high performing computational platforms in order to solve some of high the high complexity problems society requires today. Up until now tools developed to simulate NEPs, while correct and successful, are usu¬ally tightly coupled to the execution environment, using specific software frameworks (Hadoop) or direct hardware usage (GPUs). Within this context the main purpose of this work is the development of Nepfix, a generic and extensible tool that aims to execute algorithms based on NEP model and compatible variants in a local way, similar to a traditional application or in a distributed cloud environment. Nepfix as an application was developed during a 7 month cycle and is undergoing its second iteration once the prototype period was abandoned. Nepfix is designed as a modular self-contained application written in Java 8, that is, no additional external dependencies are required and it does not rely on an specific execution environment, any JVM is a valid container. Nepfix is made of two components or modules. The first module corresponds to the NEP execution and therefore simulation. During the development the current state of the theoretical model was used as a reference including most common filters and processors. Additionally extensibility is provided by the use of Python as a scripting language to run custom logic. Along with the simulation a definition language for NEP has been defined based on JSON as well as a mechanisms to represent words and their possible manipulations. NEP simulator is isolated from distribution and as mentioned before different applications that include it as a dependency are possible, the distribution of NEPs is an example of this. The second module corresponds to executing Nepfix in the cloud. The development carried a heavy R&D process since this front was not explored by other research groups until now. It's important to point out that the development of this module is not focused on results at this point in time, instead we focus on feasibility and discovery of this new perspective to execute natural computing systems and NEPs specifically. The main properties of cloud applications is that they are managed by the platform and are encapsulated in a container. For Nepfix a Spring application becomes the container and the HTTP or AMQP protocols are used for communication with the rest of the instances. Different execution perspectives were studied, namely asynchronous and synchronous models were developed for solving different kind of problems using NEPs. Different limitations and restrictions manifest in both models and are explored in detail in the respective chapters. In conclusion we can consider that Nepfix as a computational framework is suc-cessful: Cloud technology is ready for the challenge and the first results reassure that the properties Nepfix project pursued were met. Many investigation branches are left open for future investigations. In this EOG implementation guidelines are proposed for some of them like error recovery or dynamic NEP splitting. On the other hand other interesting problems that were not in the scope of this project were identified during development like word representation standardization or NEP model optimizations. As a confirmation that the results of this work can be useful to the scientific com-munity a preliminary version of this project was published in The International Work- Conference on Artificial Neural Networks (IWANN) in May 2015. Development has not stopped since that point and while Nepfix in it's current state can not be consid¬ered a final product the most relevant ideas, possible problems and solutions that were produced during the seven months development cycle are worthy to be gathered and presented giving a meaning to this EOG work.